Sie ist leicht, kostengünstig und sehr langlebig: Die neue Seilendverbindung für vier bis 96 Millimeter starke Faserseile kann einer enorm hohen Zugkraft ausgesetzt werden, ohne zu brechen. Seilendverbindungen sind das Bindeglied zwischen der Verankerung eines Seils und dem Seil selbst.
Das Geheimnis der neuen Seilendverbindung liegt im Gießharz und der speziellen Art des Gießens: Es wird um die exakt ein- und vorgespannten Fasern des Seils gegossen. Dabei entsteht eine Einheit aus Seil und Endverbindung, die erst unter extrem hohen Kräften versagt. „In unseren zahlreichen Versuchen konnten wir die Mindestbruchlast des Seilherstellers immer erreichen, oft sogar deutlich überschreiten“, erklärt Sven Winter, der die neuartige Seilendverbindung gemeinsam mit Anita Finckh-Jung am Institut für Fördertechnik und Logistik (IFT) der Universität Stuttgart entwickelt hat. Mit der Erfindung eröffnen sich für hochfeste Faserseile ganz neue Anwendungsmöglichkeiten, „denn ohne die passende Endverbindung bringt selbst das tollste Seil nichts“, wie Winter sagt.
Stahlseile durch Faserseile ersetzen
Die innovative Seilendverbindung – die Patentierung läuft derzeit in Europa, USA und China – kann überall dort eingesetzt werden, wo Stahlseile durch hochfeste Faserseile ersetzt werden sollen. Etwa wenn das Gewicht eine Rolle spielt oder die Montage möglichst einfach sein soll. Da ein Faserseil nur etwa ein Achtel eines Stahlseils wiegt und die Verbindung aus Gießharz relativ leicht ist, kann das Gewicht im Vergleich zu herkömmlichen Anwendungen um bis zu 40 Prozent gesenkt werden. „Bei dünnen Seilen spielt das keine große Rolle, aber bei Seilen mit einem Durchmesser von bis zu 96 Millimeter kann der Unterschied enorm sein“, betont Winter. Hinzu kommt die einfache Montage: Im hinteren Teil verfügt die Seilendverbindung über eine Montagehülse, die mit wenigen Handgriffen an der Hebevorrichtung befestigt werden kann.
Die Verbindung aus Faserseil und Gießharz ist zudem enorm langlebig, wie zahlreiche Versuche zeigen. „Egal wie oft das Seil be- und entlastet wird, die Verbindung bleibt stets stabil“, weiß Sven Winter. Die Zugschwellkraft sei ebenfalls sehr hoch. „Wir haben einen vierwöchigen Test durchgeführt, in dem die Verbindung 1,5 Millionen Mal be- und entlastet wurde. Selbst dabei erreichte sie noch Werte über der Mindestbruchlast des Seils.“ Weitere Vorteile sind die individuell anpassbare Geometrie sowie die Integrierbarkeit von Sensoren, etwa zur Messung der Zugkraft oder zur Identifikation mittels eines RFID-Chips.
Know-how-Transfer in die Industrie
Rund sechs Jahre sind vergangen von der ersten Idee bis zum marktfähigen Produkt. Jetzt ist der Zeitpunkt gekommen für den Know-how-Transfer von der Universität in die Industrie. „Wir sehen viele Einsatzmöglichkeiten in den unterschiedlichsten Bereichen und suchen deshalb Partner aus der Industrie zur wirtschaftlichen Umsetzung“, erklärt TLB-Innovationsmanager Hubert Siller.
Das Technologie-Lizenz-Büro (TLB) unterstützt die Universität Stuttgart bei der Patentierung und Vermarktung der Innovation und ist im Auftrag der Universität mit der weltweiten wirtschaftlichen Umsetzung dieser zukunftsweisenden Technologie beauftragt. Denkbar sei der Einsatz beispielsweise in Hebe- und Fördereinrichtungen, an Kränen, im Brückenbau, in der Schiffstechnik sowie für Offshore-Anwendungen wie beim Bau von Windkraftanlagen oder der Verankerung von Ölplattformen, wie Siller ausführt.
Die Idee zur neuen Seilendverbindung entstand im Rahmen eines Forschungsprojekts am ITF der Universität Stuttgart. „Der zündende Gedanke kam uns, als wir für ein anderes Projekt mit Gießharz arbeiteten. Wir fragten uns, warum man Seile verflechten und einbinden muss, statt sie einfach einzugießen, sodass sie sich quasi von selbst halten“, erzählt Erfinder Winter. Gemeinsam mit Kollegin Anita Finckh-Jung machte er sich an den Bau der ersten Prototypen. „Anfangs hatte die Verbindung eine Bruchkraft von nur 30 Prozent, aber wir wussten schon damals, dass da ein großes Potenzial drin steckt.“ Nach sechs Jahren Forschungsarbeit und unzähligen Versuchen und Modifikationen kann die von Winter und Finckh-Jung entwickelte Endverbindung heute bei Seilen bis 96 Millimeter die komplette Bruchlast aufnehmen. „Dafür gibt es eine Vielzahl von Anwendungen, von ganz kleinen bis sehr großen“, glaubt Sven Winter. Was ihm jetzt noch fehlt, sind geeignete Partner aus der Industrie.