Prof. Andreas Nüchter bei der Präsentation der neuen VR-Anwendung im Uni-Schwimmbad. Vor ihm ist ein mit Tracking-Codes versehener Block zu sehen – diesen nimmt Nüchter über sein VR-Headset als Teil einer Raumstation wahr.

Prof. Andreas Nüchter bei der Präsentation der neuen VR-Anwendung im Uni-Schwimmbad. Vor ihm ist ein mit Tracking-Codes versehener Block zu sehen – diesen nimmt Nüchter über sein VR-Headset als Teil einer Raumstation wahr. (Bild: Andreas Nüchter / JMU)

Nirgends lässt sich die Schwerelosigkeit des Weltraums so gut simulieren wie im Wasser – Trainings in großen Schwimmhallen gehören deshalb für angehende Astronautinnen und Astronauten zur Tagesordnung. Immer und immer wieder üben Sie Reparaturen, den Austausch von Sensoren und andere Einsätze in riesigen, aufwändig präparierten Wasserbecken. Darin befinden sich derzeit noch häufig Nachbauten von Raumstationen, Shuttles und Kapseln, an denen geübt werden kann - was enorm viel Aufwand und Platz benötigt.

Ein Team von Forschenden der Julius-Maximilians-Universität (JMU) hat jetzt eine Virtual-Reality-(VR-)-Anwendung entwickelt, die das Weltraumtraining flexibler und ressourcenschonender machen könnte. Beteiligt waren der Lehrstuhl für Informatik XVII (Robotik) unter Leitung von Andreas Nüchter sowie der Lehrstuhl für Informatik IX (Human Computer Interaction) unter Leitung von Marc Latoschik.

Bleiben Sie informiert

Diese Themen interessieren Sie? Mit unserem Newsletter sind Sie immer auf dem Laufenden. Gleich anmelden!

Unter Wasser einen Blick ins All werfen

„Wir glauben, dass wir den Bedarf an riesigen Schwimmbädern für das Astronautentraining durch eine innovative VR-Anwendung verringern können“, erklärt Andreas Nüchter. „Durch die Simulation von Weltraumausrüstung in der virtuellen Realität machen wir große Schwimmbecken und aufwändige Nachbauten überflüssig.“ Dazu hat das Würzburger Team in einer von der Europäischen Weltraumorganisation ESA geförderten Studie eine Taucherbrille mit einem VR-Headset kombiniert und eine realitätsnahe Weltraumumgebung simuliert.

Mithilfe des Headsets tauchen Astronauten und Astronautinnen in einen virtuellen Raum ein. Vor sich sehen sie ein digitales Abbild der Raumstation. Tracking-Systeme unter Wasser ermöglichen ihnen eine genaue Positionierung und Orientierung im Raum, sodass sie sich entlang der virtuellen Station bewegen und ihre Perspektive ändern können.

Wasserdichtes Headset war größtes Problem

Das Headset wasserdicht zu machen, war die größte Herausforderung der Würzburger Forschenden. „Mit 3D-Druckern lassen sich zwar fast beliebige Formen drucken, aber die Druckergebnisse müssen wasserdicht sein“, so Nüchter. Auch die Verbindung zu den von der ESA vorgegebenen Masken mit unterschiedlichen Materialien herzustellen, war schwierig. Zudem musste das Tracking weiterentwickelt werden, sodass die Brechung der Kamerastrahlen im Wasser korrekt berücksichtigt wird.

Nachdem das System im Dezember auf der AR/VR-Konferenz der Europäischen Weltraumorganisation (ESA) vorgestellt wurde, steht im Mai ein erster Test im ESA-Astronautenzentrum in Köln an. Ein nächster Entwicklungsschritt, den sich das Würzburger Team vornimmt, ist das Tracking von Händen und Werkzeugen.

Sie möchten gerne weiterlesen?