Die effiziente Speicherung elektrischer Energie ist der Flaschenhals für alle mobilen elektronischen Anwendungen. Gewicht und Kosten pro kWh Speicherkapazität der im Crashfall: Was macht die Batterie?">Batterie begrenzen maßgeblich den Einsatzbereich eines Produktes. Für die Elektromobilität verursacht der Speicher beispielsweise den Großteil der Gesamtkosten des Fahrzeugs bei gleichzeitig eingeschränkter Reichweite von ca. 150 km bei Voll-Elektroautos mit Lithium-Ionen-Technologie. Dementsprechend groß ist der Bedarf an neuen Speichern mit höherer Energiedichte und geringen Kosten.
Lösung hierfür können neuartige Lithium-Schwefel-Batterien sein, bei denen zukünftig Energiedichten von bis zu 500 Wh/kg erwartet werden. Gleichzeitig wird bei dieser Technologie das teure Kathodenmaterial der Li-Ionen-Zellen durch kostengünstigen ungiftigen und nahezu unbegrenzt verfügbaren Schwefel abgelöst.
An der Weiterentwicklung der Lithium-Schwefel-Batteriezellen auf der Basis neuer Kathoden, Elektrolyten und Anoden wurde im Rahmen des Verbundprojektes LiScell in den letzten drei Jahren geforscht.
Forschung an Lithium-Schwefel-Technik für E-Autos
Die Fraunhofer-Institute für Werkstoff- und Strahltechnik IWS, für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP und für Verkehrs- und Infrastruktursysteme IVI aus Dresden sowie das Fraunhofer-Institut für Chemische Technologie ICT aus Pfinztal beschäftigten sich neben der Materialentwicklung auch mit skalierbaren Herstellungsverfahren für Anoden und Kathoden als Rollenware und dem Aufbau von Batteriemodulen. Ziel ist es, die Lithium-Schwefel-Technologie für die Elektromobilität weiter zu erschließen.
Die Technologie zeichnet sich durch geringe Materialkosten und eine hohe Energiedichte aus und könnte so eine attraktive Energiespeicherlösung für zukünftige Mobilität darstellen. Die größte Herausforderung hierbei ist die geringe Zyklenstabilität der Zellen: Li-S-Zellen erreichen zwar bereits heute bis zu 40 Prozent höhere Energiedichten (bis
400 Wh/kg) als die besten Li-Ionen-Zellen, können allerdings nur 50 bis 100-mal wiederaufgeladen und genutzt werden. Grund dafür sind Zersetzungsreaktionen des Elektrolyten an der Anoden-Oberfläche, die aus metallischem Lithium besteht. Auf diese Herausforderung fokussierten sich die Wissenschaftler und entwickelten ein Zellkonzept auf Basis von Silizium-Legierungs-Anoden zur Substitution des metallischen Lithiums.
Am Fraunhofer IWS konnte dieses neue Anoden- und Zellkonzept in Li-S- und Li-Ionen-Prototypzellen umgesetzt und demonstriert werden. Hier entstanden auch neue Lösungen für die Fertigung der Schwefelkathoden. Dr. Holger Althues, Konsortialführer und Leiter der Abteilung Chemische Oberflächen- und Barrieretechnik am Fraunhofer IWS, erläutert: “Mit dem Trockenfilmverfahren des Fraunhofer IWS lassen sich die pulverförmigen Aktivmaterialien ohne Einsatz von Lösungsmitteln in hochkapazitive Elektroden verarbeiten.“
Vorteile der Si-Anoden-Technik
Die Vorteile der Si-Anoden-Technik wurden in Sicherheitstests des Fraunhofer ICT herausgearbeitet: Li-S-Zellen haben einen deutlichen Vorsprung gegenüber herkömmlichen Energiespeichern: Sie besitzen eine hohe Toleranz gegenüber Überladung und thermischer Beanspruchung. Mit der Si-Anode konnte ein thermisches Durchgehen der Zellen selbst oberhalb 300 °C vermieden werden.
Eine präzise Kenntnis von Lade- und Alterungszustand bildet die Voraussetzung für den zuverlässigen Batteriebetrieb. Die konventionelle Ladezustandsbestimmung versagt jedoch bei dieser neuen Zelltechnologie. "In der geschickten Kombination von daten- und modellbasierten Bestimmungsmethoden für Ladung und Alterung liegt der Schlüssel für die praktische Anwendung" ergänzt Dr. Ulrich Potthoff vom hierfür verantwortlichen Fraunhofer IVI.
Schließlich galt es, geeignete kostengünstige und effiziente Fertigungsverfahren zu erproben. „Mit einer neuen Vakuum-Beschichtungstechnologie konnten Silizium-Schichten mit einer speziellen Mikrostruktur im Rolle-zu-Rolle-Verfahren beidseitig auf dünnen Stromkollektorfolien aus Kupfer abgeschieden werden“, fasst Dr. Nicolas Schiller, Bereichsleiter „Flache und Flexible Produkte“, die Ergebnisse des Fraunhofer FEP zusammen. „Die Schichten erwiesen sich sowohl für Li-S-Zellen als auch für Li-Ionen-Zellen als geeignetes Anodenmaterial mit deutlichem Steigerungspotential hinsichtlich der Volumenenergiedichte gegenüber herkömmlichen Lösungen.“
Ergebnis des Projekts
Es wurden nach drei Jahren intensiver Forschungsarbeit große Fortschritte in der Lithium-Schwefel-Technologie für Energiespeicher gemacht, die unter anderem die Möglichkeit der Wiederaufladung der Batterien um ein Vielfaches erhöht und die Herstellungskosten durch günstige Rolle-zu-Rolle-Fertigungsverfahren erheblich senkt. Damit ist ein weiterer Schritt für den Einsatz dieser Energiespeicher zur Elektromobilität oder für Wearables getan. hei